PCC'04 -- Conference on Pervasive Computing and Communications

The 2004 International Multiconference in Computer Science & Computer Engineering

June 21-24, 2004, Las Vegas, Nevada, USA, Monte Carlo Resort

Liquid Schedule Searching Strategies for the Optimization of Collective Network Communications

Emin Gabrielyan, Roger D. Hersch

Swiss Federal Institute of Technology Lausanne

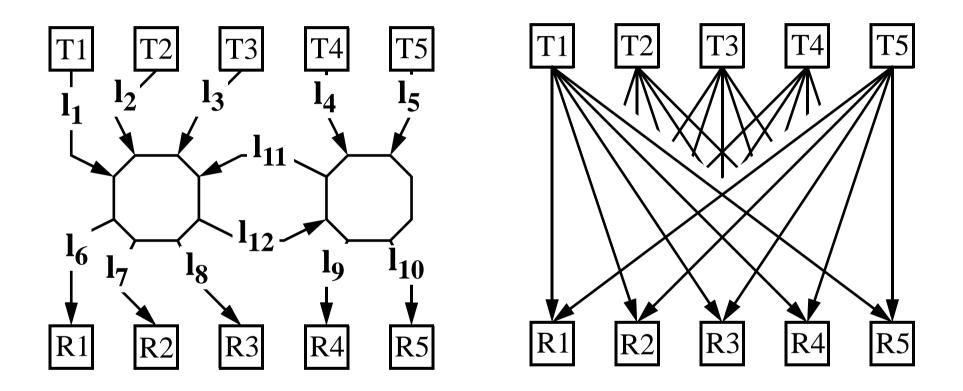
The 2004 International Multiconference in Computer Science & Computer Engineering Conference on Pervasive Computing and Communications (PCC'04) Monte Carlo Resort, Las Vegas, Nevada, USA, June 21-24, 2004

Liquid Schedule Searching Strategies for the Optimization of Collective Network Communications

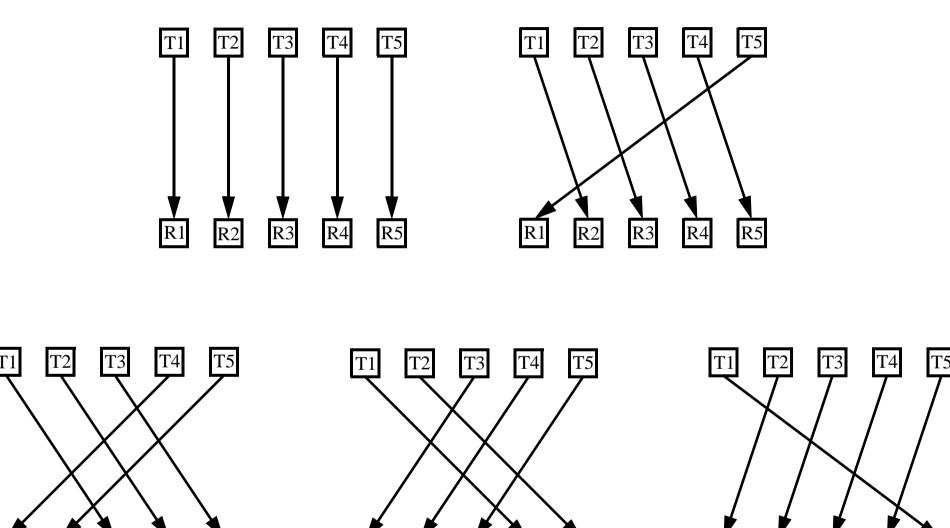
Emin Gabrielyan, Roger D. Hersch

Swiss Federal Institute of Technology Lausanne

25-transmission request



Round-robin schedule



-- The 2004 International Multiconference in Computer Science & Computer Engineering -- Conference on Pervasive Computing and Communications (PCC'04) -- Monte Carlo Resort, Las Vegas, Nevada, USA, June 21-24, 2004 --

R3

R4

R5

R3

R1

R2

R4

R5

R2

R1

R2

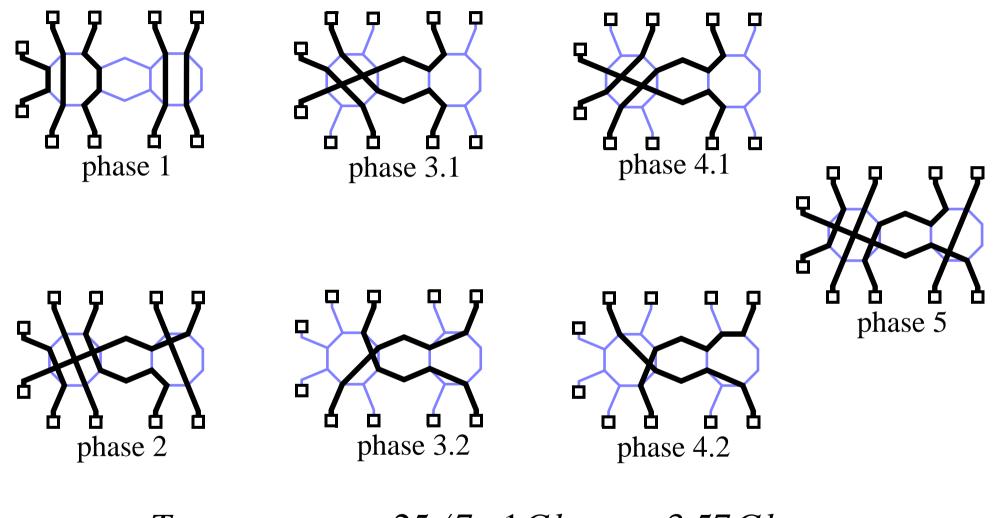
R1

R3

R4

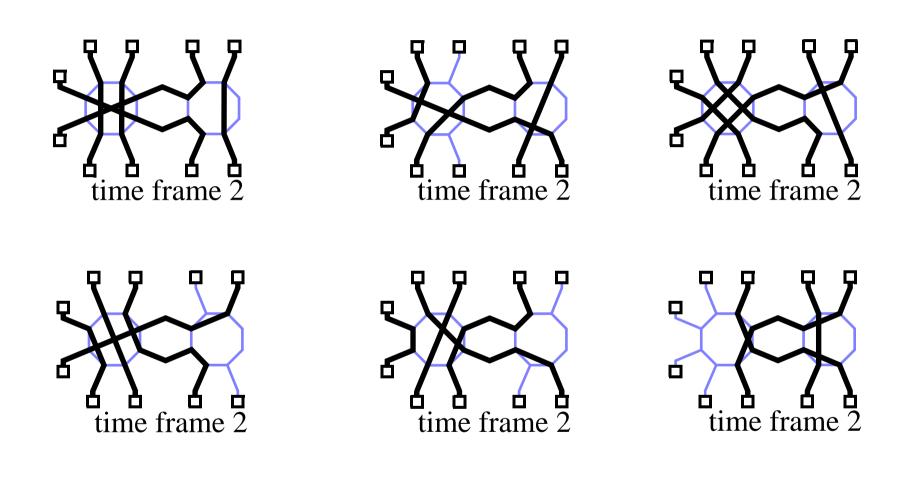
R5

Round-robin Throughput



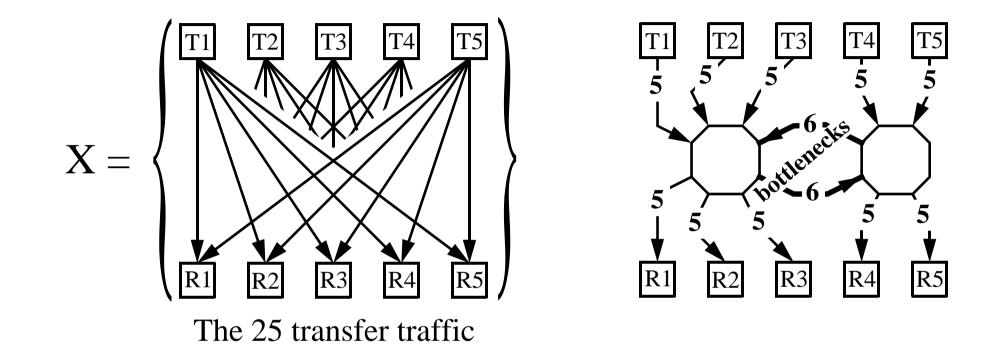
 $T_{roundrobin} = 25/7 \cdot 1Gbps = 3.57Gbps$

Liquid schedule



 $T_{liquid} = 25/6 \cdot 1Gbps = 4.16Gbps$

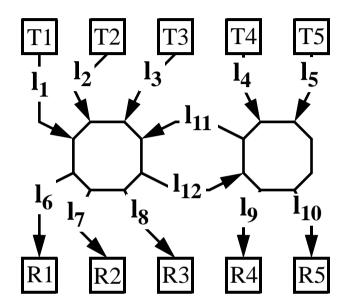
Transfers and Load of Links



$$\lambda(l_1, X) = 5, \dots \lambda(l_{12}, X) = 6$$

Transfers:
$$\{l_1, l_6\}, \dots \{l_1, l_{12}, l_9\}, \dots$$

Duration of Traffic



$$\lambda(l_1, X) = 5, \dots \lambda(l_{10}, X) = 5$$
$$\lambda(l_{11}, X) = 5, \dots \lambda(l_{12}, X) = 6$$
$$\Lambda(X) = 6$$

$$X = \begin{cases} \{l_1, l_6\}, \{l_1, l_7\}, \{l_1, l_8\}, \{l_1, l_{12}, l_9\}, \{l_1, l_{12}, l_{10}\}, \\ \{l_2, l_6\}, \{l_2, l_7\}, \{l_2, l_8\}, \{l_2, l_{12}, l_9\}, \{l_2, l_{12}, l_{10}\}, \\ \{l_3, l_6\}, \{l_3, l_7\}, \{l_3, l_8\}, \{l_3, l_{12}, l_9\}, \{l_3, l_{12}, l_{10}\}, \\ \{l_4, l_{11}, l_6\}, \{l_4, l_{11}, l_7\}, \{l_4, l_{11}, l_8\}, \{l_4, l_9\}, \{l_4, l_{10}\}, \\ \{l_5, l_{11}, l_6\}, \{l_5, l_{11}, l_7\}, \{l_5, l_{11}, l_8\}, \{l_5, l_9\}, \{l_5, l_{10}\} \end{cases}$$

Liquid Throughput

$$X = \left\{ \begin{array}{l} \{l_1, l_6\}, \{l_1, l_7\}, \{l_1, l_8\}, \{l_1, l_{12}, l_9\}, \{l_1, l_{12}, l_{10}\}, \\ \{l_2, l_6\}, \{l_2, l_7\}, \{l_2, l_8\}, \{l_2, l_{12}, l_9\}, \{l_2, l_{12}, l_{10}\}, \\ \{l_3, l_6\}, \{l_3, l_7\}, \{l_3, l_8\}, \{l_3, l_{12}, l_9\}, \{l_3, l_{12}, l_{10}\}, \\ \{l_4, l_{11}, l_6\}, \{l_4, l_{11}, l_7\}, \{l_4, l_{11}, l_8\}, \{l_4, l_9\}, \{l_4, l_{10}\}, \\ \{l_5, l_{11}, l_6\}, \{l_5, l_{11}, l_7\}, \{l_5, l_{11}, l_8\}, \{l_5, l_9\}, \{l_5, l_{10}\} \end{array} \right\}$$

the throughput of a single link

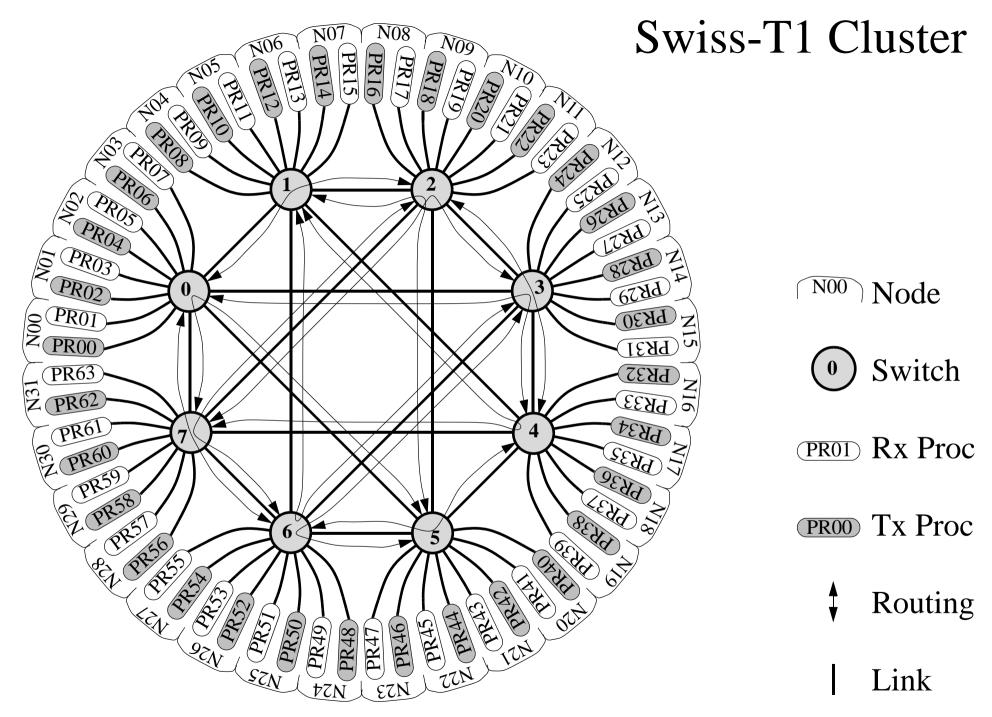
total number of transfers —

 $T_{liquid} = \frac{\#(X)}{\Lambda(X)} \cdot T_{link} = \frac{25}{6} \cdot 1Gbps = 4.17Gbps$ traffic's duration (the load of its bottlenecks)

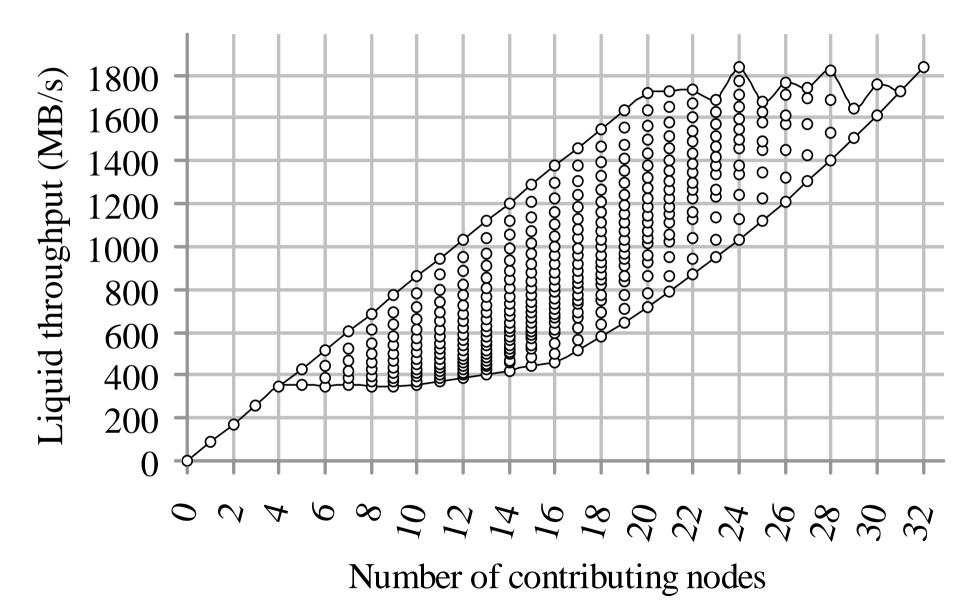
Schedules yielding the liquid throughput

 $X = \left\{ \begin{array}{l} \{l_1, l_6\}, \{l_1, l_7\}, \{l_1, l_8\}, \{l_1, l_{12}, l_9\}, \{l_1, l_{12}, l_{10}\}, \\ \{l_2, l_6\}, \{l_2, l_7\}, \{l_2, l_8\}, \{l_2, l_{12}, l_9\}, \{l_2, l_{12}, l_{10}\}, \\ \{l_3, l_6\}, \{l_3, l_7\}, \{l_3, l_8\}, \{l_3, l_{12}, l_9\}, \{l_3, l_{12}, l_{10}\}, \\ \{l_4, l_{11}, l_6\}, \{l_4, l_{11}, l_7\}, \{l_4, l_{11}, l_8\}, \{l_4, l_9\}, \{l_4, l_{10}\}, \\ \{l_5, l_{11}, l_6\}, \{l_5, l_{11}, l_7\}, \{l_5, l_{11}, l_8\}, \{l_5, l_9\}, \{l_5, l_{10}\} \end{array} \right\}$

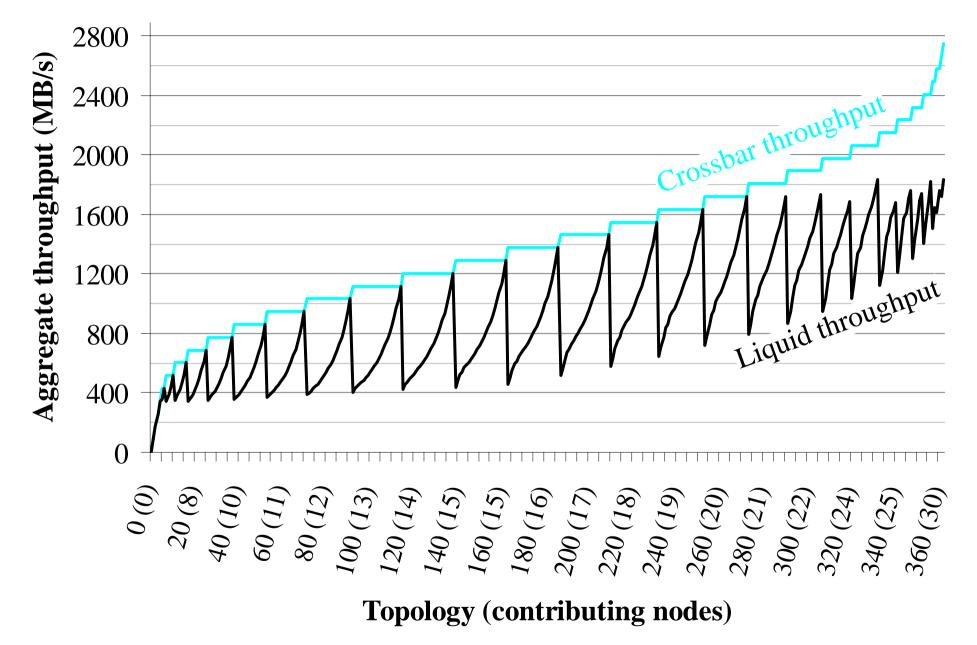
- Without a right schedule we may have intervals when the access to the bottleneck links is blocked by other transmissions.
- Our goal is to schedule the transfers such that all bottlenecks are always kept occupied ensuring that the liquid throughput is obtained.
- A schedule yielding the liquid throughput we call as a liquid schedule and our objective is to find a liquid schedule whenever it exists.



363 Communication Patterns

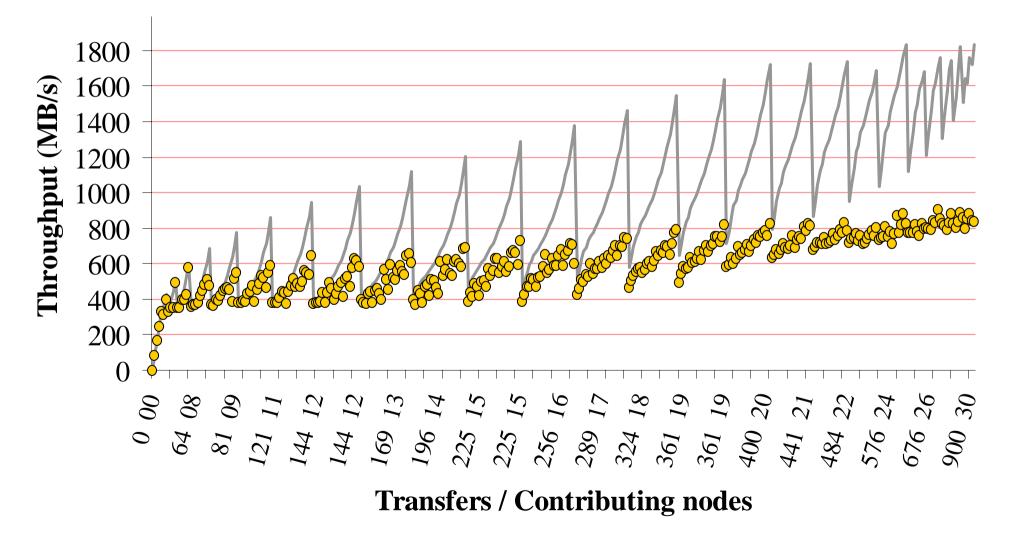


363 Topology Test-bed



Round-robin throughput

- theoretical liquid • measured round-robin

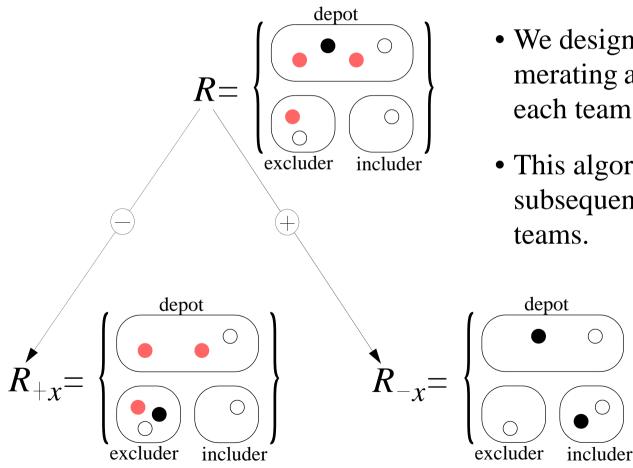


Team: a set of mutually non-congesting transfers using all bottlenecks

$$\alpha = \begin{cases} {}^{\{1,1,6\},\{1,1,7\},\{1,1,8\},\{1,1,1_2,1_9\},\{1,1,1_2,1_10\},\\ {}^{\{1,2,1_6\},\{1,2,1_7\},\{1,2,1_8\},\{1,2,1_2,1_9\},\{1,2,1_12,1_{10}\},\\ {}^{\{1,3,1_6\},\{1,2,1_7\},\{1,3,1_8\},\{1,3,1_2,1_9\},\{1,3,1_12,1_{10}\},\\ {}^{\{1,4,1_{11},1_6\},\{1,4,1_{11},1_7\},\{1,5,1_{11},1_8\},\{1,5,1_9\},\{1,5,1_{10}\}\\ {}^{\{1,1,1_8\},\{1,5,1_{11},1_7\},\{1,5,1_{11},1_8\},\{1,5,1_9\},\{1,5,1_{10}\}\\ {}^{\{1,1,1_8\},\{1,1,1_6\},\{1,1,1_7\},\{1,5,1_{11},1_8\},\{1,5,1_9\},\{1,5,1_{10}\}\\ {}^{\{1,1,1_8\},\{1,1,1_6\},\{1,1,1_7\},\{1,5,1_{11},1_8\},\{1,5,1_9\},\{1,5,1_{10}\}\\ {}^{\{1,1,1_8\},\{1,1,1_6\},\{1,1,1_7\},\{1,5,1_{11},1_8\},\{1,5,1_9\},\{1,1,1_8\},\{1,1,1_9\},\{$$

$\mathfrak{I}(X)$, all teams of the traffic X

- - transfer *x*
- - transfers congesting with *x*
- $_{\odot}$ transfers non-congesting with x



- To cover the full solution space when constructing a liquid schedule an efficient technique obtaining the whole set of possible teams of a traffic is required.
- We designed an efficient algorithm enumerating all teams of a traffic traversing each team once and only once.
- This algorithm obtains each team by subsequent partitioning of the set of all teams.
 - We introduced triplets consisting of subsets of the traffic, representing oneby-one partitions of the set of all teams.

Liquid schedule search tree

$$X \to \wp(X) = \{A_1, A_2, A_3 \dots A_n\}$$

$$X_1 = X - A_1 \to \wp(X_1) = \{A_{1, 1}, A_{1, 2} \dots\}$$

$$X_{1, 1} = X_1 - A_{1, 1}$$

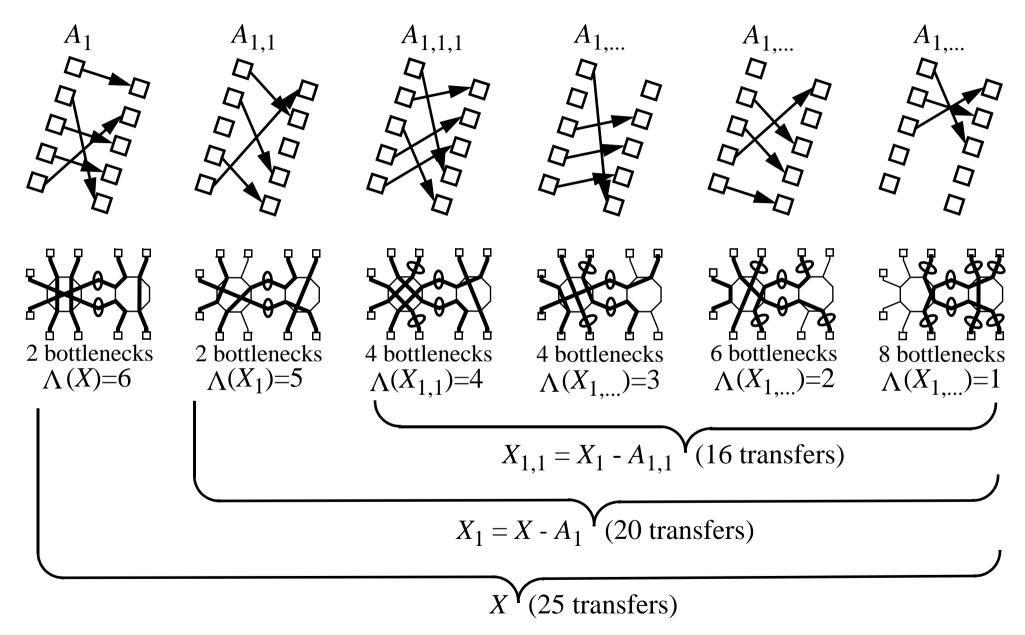
$$X_{1, 2} = X_1 - A_{1, 2}$$

$$X_{2} = X - A_2 \to \wp(X_2) = \{A_{2, 1}, A_{2, 2} \dots\}$$

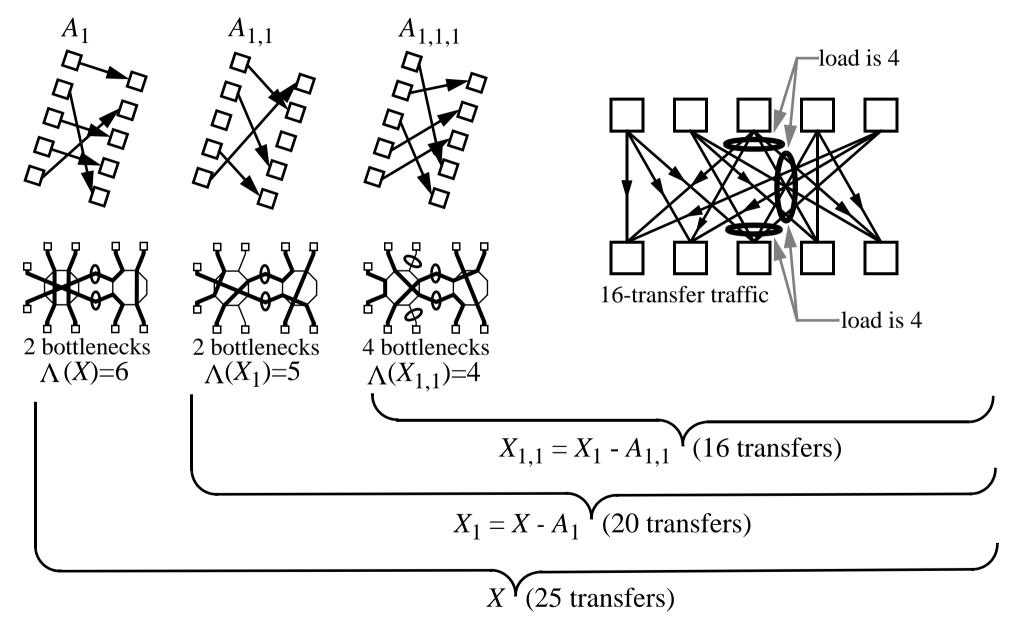
$$X_{2, 1} = X_2 - A_{2, 1}$$

$$X_{2, 2} = X_2 - A_{2, 2}$$

Additional bottlenecks



Prediction of dead-ends

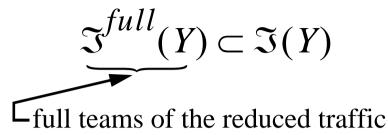


Liquid schedule search optimization

teams of the
reduced traffic -
$$\Im(Y) \subset \{A \in \Im(X) | A \subset Y\}$$
 - original traffic's teams formed
from the reduced traffic
$$X \rightarrow \wp(X) = \{A_1, A_2, A_3 \dots A_n\}$$
$$X_1 = X - A_1 \rightarrow \wp(X_1) = \{A_{1, 1}, A_{1, 2} \dots\}$$
$$X_{1, 1} = X_1 - A_{1, 1}$$
$$X_{1, 2} = X_1 - A_{1, 2}$$
$$\dots$$
$$X_2 = X - A_2 \rightarrow \wp(X_2) = \{A_{2, 1}, A_{2, 2} \dots\}$$

decreasing the search space without affecting the solution space $\wp(Y) = \{A \in \mathfrak{I}(X) | A \subset Y\} \rightarrow \wp(Y) = \mathfrak{I}(Y)$

Liquid schedules construction



Choice =
$$\wp(Y) = \Im(Y)$$

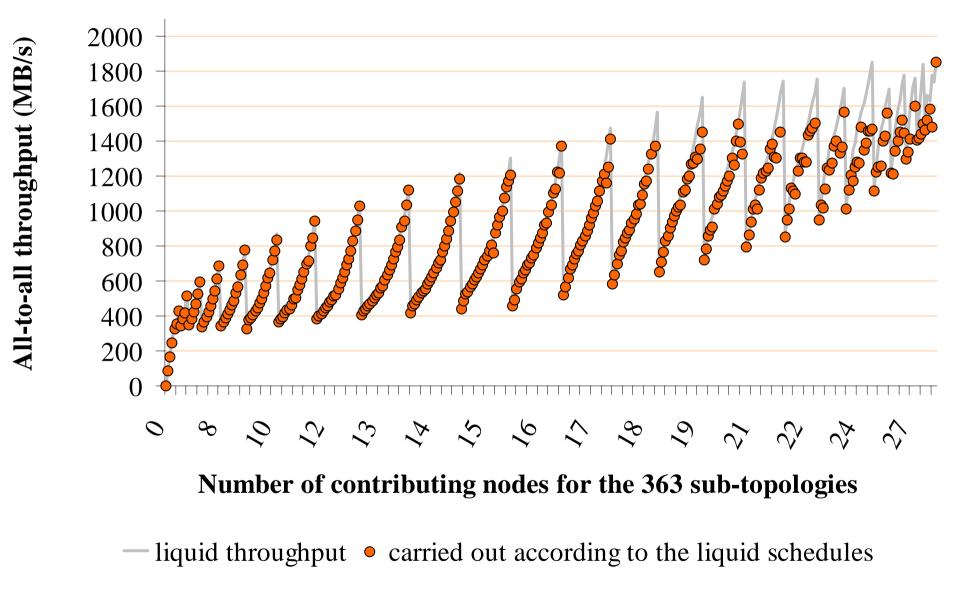
 \downarrow
Choice = $\wp(Y) = \Im^{full}(Y)$

additionally decreasing the search space without affecting the solution space

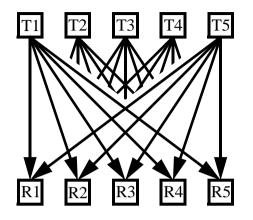
For more than 90% of the test-bed topologies construction of a global liquid schedule is completed in a fraction of a second (less than 0.1s).

⁻⁻ The 2004 International Multiconference in Computer Science & Computer Engineering -- Conference on Pervasive Computing and Communications (PCC'04) -- Monte Carlo Resort, Las Vegas, Nevada, USA, June 21-24, 2004 --

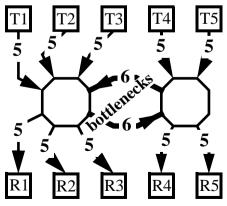
Results

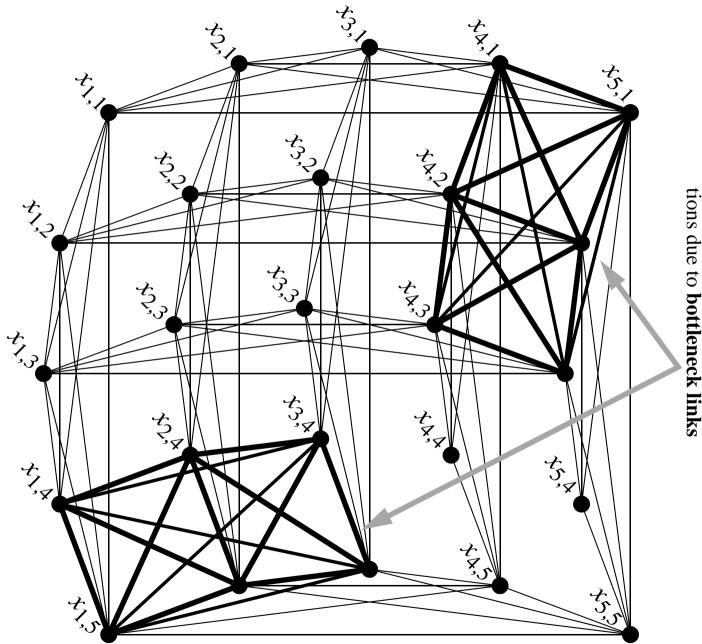


Congestion Graph



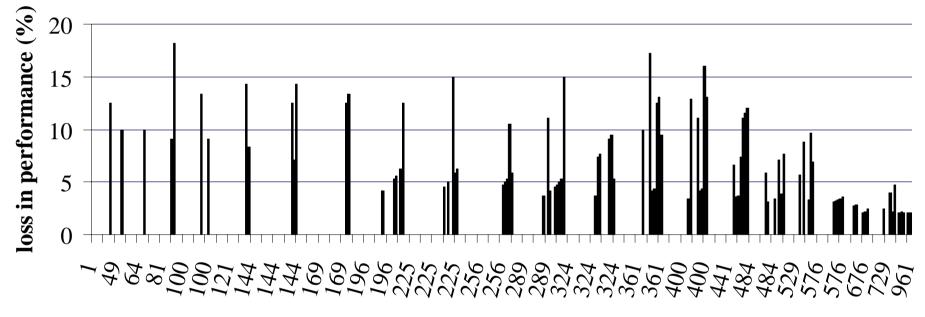
The 25 vertices of the graph represent the 25 transfers transfers. The edges represent congestion relations between transfers, i.e. each edge represents one or more communication links shared by two transfers.





Bold edges represent all conges-

Loss of performance induced by schedules computed with a graph colouring heuristic algorithm



number of transfers for each of 363 topologies

- For 74% of the topologies Dsatur algorithm does not induce a loss of performance.
- For 18% of topologies, the performance loss is bellow 10%.
- For 8% of topologies, the loss of performance is between 10% and 20%.

⁻⁻ The 2004 International Multiconference in Computer Science & Computer Engineering -- Conference on Pervasive Computing and Communications (PCC'04) -- Monte Carlo Resort, Las Vegas, Nevada, USA, June 21-24, 2004 --

Conclusion

- Data exchanges relying on the liquid schedules may be carried out several times faster compared with topology-unaware schedules.
- Thanks to introduced theoretical model we considerably reduce the liquid schedule search space without affecting the solution space.
- Our method may be applied to applications requiring efficiency in concurrent continuous transmissions, such as video and voice traffic management, high energy physics data acquisition and reassembling.
- Liquid scheduling is applicable in wormhole, cut-through networks and can be useful in wavelength assignment problem in WDM optical networks.

Thank You!

Contact: Emin.Gabrielyan@epfl.ch